
Chapter 21: The Linux System

Linux History Fil S tLinux History
Design Principles

File Systems
Input and Output

Kernel Modules
Process Management

Interprocess Communication
Network Structure

Scheduling
Memory Management

Security
Memory Management

實務補充資料： 鳥哥的 Linux 私房菜 (http://linux.vbird.org/)

21.1 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Objectives

To explore the history of the UNIX operating system from
hi h Li i d i d d th i i l hi h Li iwhich Linux is derived and the principles which Linux is

designed upon
T i th Li d l d ill t t hTo examine the Linux process model and illustrate how
Linux schedules processes and provides interprocess
communicationcommunication
To look at memory management in Linux
T l h Li i l t fil t dTo explore how Linux implements file systems and
manages I/O devices

21.2 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

21.1 History (不考)

Linux is a modern, free operating system based on UNIX
standardsstandards

First developed as a small but self-contained kernel in 1991 by
Linus Torvalds, with the major design goal of UNIX compatibility
Its history has been one of collaboration by many users from all
around the world, corresponding almost exclusively over the
Internet

It has been designed to run efficiently and reliably on
common PC hardware, but also runs on a variety of
th l tfother platforms

The core Linux operating system kernel is entirely original, but it
can run much existing free UNIX software, resulting in an entirecan run much existing free UNIX software, resulting in an entire
UNIX-compatible operating system free from proprietary code
Many, varying Linux Distributions including the kernel, applications, and
management tools

21.3 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

management tools

Linux 2.0
Released in June 1996, 2.0 added two major new
capabilities:

Support for multiple architectures, including a fully 64-bit native
Alpha port

Available for Motorola 68000-series processors, Sun Sparc systems,Available for Motorola 68000 series processors, Sun Sparc systems,
and for PC and PowerMac systems

Support for multiprocessor architectures
Oth f t i l d dOther new features included:

Improved memory-management code, with a unified cache for file-
system data
Improved TCP/IP performance
Support for internal kernel threads, for handling dependencies between
loadable modules, and for automatic loading of modules on demand, g
Standardized configuration interface

2.4 and 2.6 increased SMP support, added journaling file

21.4 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

system, preemptive kernel, 64-bit memory support

The Linux System
Linux uses many tools developed as part of Berkeley’s BSD
operating system MIT’s X Window System and the Freeoperating system, MIT s X Window System, and the Free
Software Foundation's GNU project
The main system libraries were started by the GNU projectThe main system libraries were started by the GNU project,
with improvements provided by the Linux community
Linux networking-administration tools were derived fromLinux networking administration tools were derived from
4.3BSD code; recent BSD derivatives such as Free BSD
have borrowed code from Linux in return
The Linux system is maintained by a loose network of
developers collaborating over the Internet, with a small
number of public ftp sites acting as de facto standard
repositories. The File System Hierarchy Standard specifies
th ll l t f t d d Li fil t

21.5 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

the overall layout of a standard Linux file system

Linux Distributions

Standard, precompiled sets of packages, or distributions,
include the basic Linux system system installation andinclude the basic Linux system, system installation and
management utilities, and ready-to-install packages of
common UNIX tools
The first distributions managed these packages by
simply providing a means of unpacking all the files into s p y p o d g a ea s o u pac g a t e es to
the appropriate places; modern distributions include
advanced package management
Early distributions included SLS and Slackware

Red Hat and Debian are popular distributions from commercial
and noncommercial sources, respectively

The RPM Package file format permits compatibility

21.6 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

among the various Linux distributions

Linux Licensing
The Linux kernel is distributed under the GNU General
Public License (GPL) the terms of which are set out byPublic License (GPL), the terms of which are set out by
the Free Software Foundation

If you release software that includes any component covered by
th GPL th t k d il bl l idthe GPL, then you must make source code available alongside
any binary distributions

Linux is free, but not public-domain software
Copyrights are still held by various authorsCopyrights are still held by various authors

Anyone using Linux, or creating their own derivative of y g , g
Linux, may not make the derived product proprietary;
software released under the GPL may not be
redistributed as a binary only product

21.7 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

redistributed as a binary-only product

21.2 Design Principles

Linux is a multiuser, multitasking system with a full set of
UNIX tibl t lUNIX-compatible tools
Its file system adheres to traditional UNIX semantics, and it
f ll i l t th t d d UNIX t ki d lfully implements the standard UNIX networking model
Main design goals are speed, efficiency, and standardization

To avoid the lessons learned in UNIX

Linux is designed to be compliant with the relevant POSIX
(Portable Operating System Interface for Unix) standards
and threading extensions; at least two Linux distributions
have achieved official POSIX certificationhave achieved official POSIX certification
The Linux programming interface adheres to the SVR4 UNIX
semantics rather than to BSD behavior

21.8 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

semantics, rather than to BSD behavior

Components of a Linux System

21.9 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Components of a Linux System (Cont)

Like most UNIX implementations, Linux is composed of
three main bodies of code: kernel system libraries andthree main bodies of code: kernel, system libraries, and
system utilities; the most important distinction between
the kernel and all other components

The kernel is responsible for maintaining the important
b t ti f th ti tabstractions of the operating system

Kernel code executes in kernel mode with full access to all the
physical resources of the computerp y p
Implemented as a single, monolithic binary. All kernel code and
data structures are kept in the same single address space, so
that no context switches are necessary for system calls orthat no context switches are necessary for system calls or
hardware interrupt.
The single address space contains all kernel codes, including all
device drivers file systems and networking code

21.10 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

device drivers, file systems, and networking code

Components of a Linux System (Cont)

The system libraries define a standard set of
functions through which applications interact with the
kernel, and which implement much of the operating-
system functionality that does not need the fullsystem functionality that does not need the full
privileges of kernel code

The system utilities perform individual specialized
management tasksg

Some to invoke initialize and configure some aspects of the
system
Some may run permanently, known as daemons

21.11 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

21.3 Kernel Modules
Sections of kernel code that can be compiled, loaded, and
unloaded independent of the rest of the kernel
A kernel module may typically implement a device driver, a
file system, or a networking protocol
The module interface allows third parties to write and
distribute, on their own terms, device drivers or file systems
that could not be distributed under the GPL
Kernel modules allow a Linux system to be set up with a
standard, minimal kernel, without any extra device drivers
built in
Three components to Linux module support:

The module management

21.12 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

The driver registration
A conflict resolution mechanism

Module Management
Supports loading modules into memory and letting them
talk to the rest of the kernel

Make sure that any reference to the kernel symbols or entry
points are updated to point to the correct locations in the kernel’s
address space

Module loading is split into two separate sections:g p p
Managing sections of module code in kernel memory
Handling symbols that modules are allowed to reference

The module requestor manages loading requested, but
currently unloaded, modules; it also regularly queries the
kernel to see whether a dynamically loaded module is
still in use and will unload it when it is no longer actively

21.13 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

still in use, and will unload it when it is no longer actively
needed

Driver Registration

Allows modules to tell the rest of the kernel that a new
driver has become availabledriver has become available

fThe kernel maintains dynamic tables of all known
drivers, and provides a set of routines to allow drivers to
be added to or removed from these tables at any timebe added to or removed from these tables at any time

Registration tables include the following items:
Device drivers
File systems
Network protocols
Bi f t

21.14 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

Binary format

Conflict Resolution

A mechanism that allows different device drivers to
reserve hardware resources and to protect those
resources from accidental use by another driver

The conflict resolution module aims to:
Prevent modules from clashing over access to hardware
resources
P t t b f i t f i ith i ti d i d iPrevent autoprobes from interfering with existing device drivers
Resolve conflicts with multiple drivers trying to access the
same hardware

21.15 Silberschatz, Galvin and Gagne ©2009Operating System Concepts – 8th Edition

